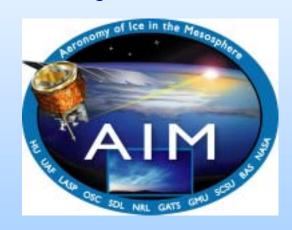
Solar Occultation For Ice Experiment (SOFIE)

Mark Hervig and Larry Gordley GATS, Inc.

James Russell III Hampton University


John Kemp Space Dynamics Laboratory Utah State University

SOFIE is part of the AIM mission

Aeronomy of Ice in the Mesosphere

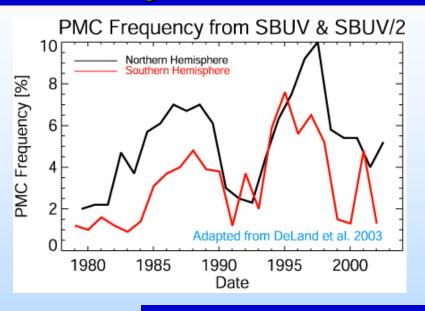
AIM will study noctilucent clouds (NLCs) to determine how they form and why they vary

- •AIM was selected as a NASA Small Explorers (SMEX) mission in July 2002
- •AIM was confirmed for flight April 2004
- •AIM is scheduled for launch in September 2006

Noctilucent Clouds (NLC)

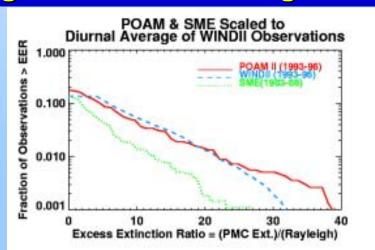
- Highest altitude clouds in our atmosphere (83 km)
- •Occur pole-ward of ~50° latitude, both hemispheres
- Summer phenomena
- Composed of water ice crystals (~50 nm radius)

Noctilucent means "night shining"


NLCs are also known as

"polar mesospheric clouds" (PMCs)

Motivation for AIM: NLCs are changing


Increasing numbers are occurring

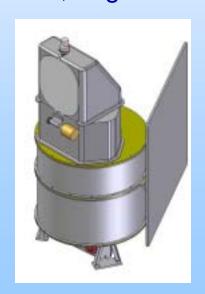
NLCs are moving equatorward

Brighter NLCs are being observed

WHY?

The AIM Mission

Orbit: 600 km, polar, sun-synchronous

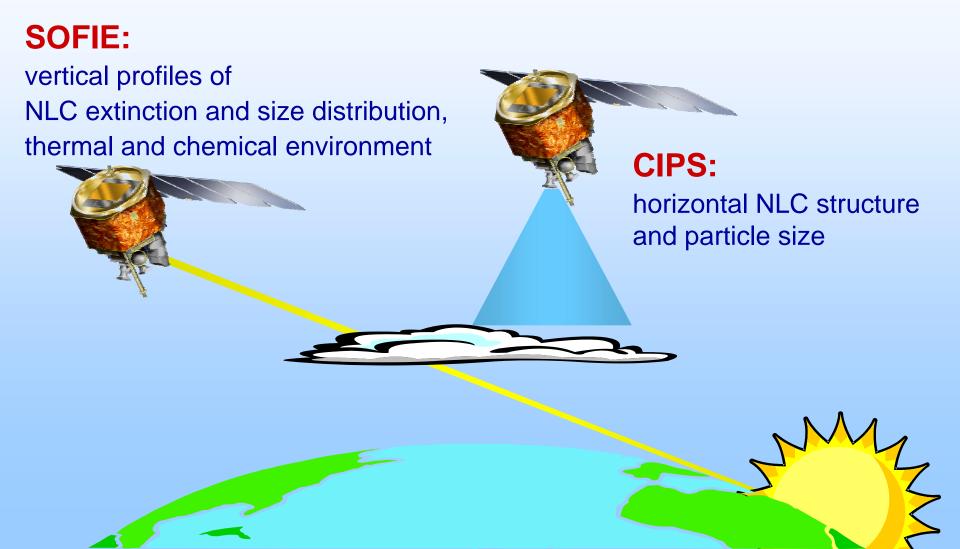

Minimum Life: 24 months (4 NLC seasons)

Payload: 3 science instruments

OSC, Dulles


SOFIE (Solar Occultation For Ice Experiment): SDL, Logan

CIPS (Cloud Imaging and Particle Size): LASP, Boulder



CDE (Cosmic Dust Experiment): LASP, Boulder

AIM Common Volume Observations

CIPS and SOFIE observe the same volume each orbit with 6 minutes ∆t

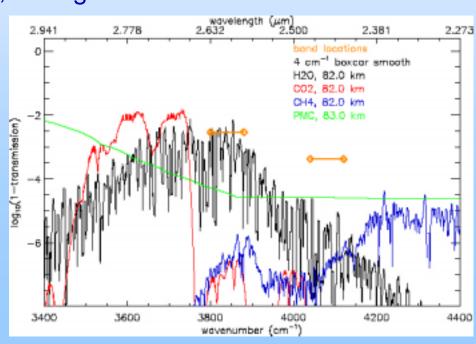
SOFIE Measurement Overview

- ➤ Broadband differential absorption measurements:
 - •Gas abundance: H₂O, O₃, CH₄, NO, CO₂
 - •Particle extinction: 10 wavelengths from 0.29 to 5.3 μm
 - Temperature
- ➤ High signal-to-noise: 10⁶ to 10⁹
- ➤ Precise solar tracking: 2 arcsec precision

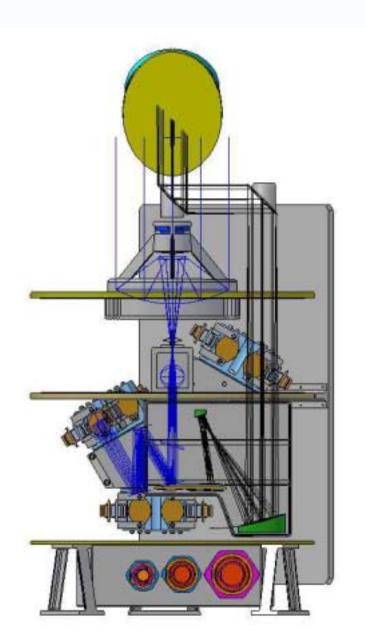
SOFIE Channel Summary								
channel	1	2	3	4	5	6	7	8
Target	O ₃	particles	H ₂ O	CO ₂	particles	CH ₄	CO ₂	NO
Center λ (μm)								
Strong band	0.290	0.862	2.60	2.77	3.06	3.37	4.25	5.32
Weak band	0.328	1.031	2.45	2.94	3.19	3.51	4.63	4.98

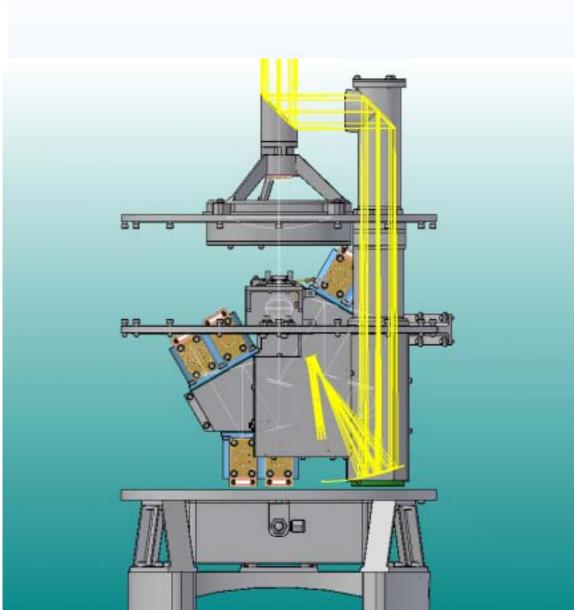
Differential Absorption Measurements

Each SOFIE channel uses two detectors to make three measurements:


- Strong band absorption
- Weak band absorption
- Difference signal (weak band strong band)

Difference signal measurements remove interference and reduce noise

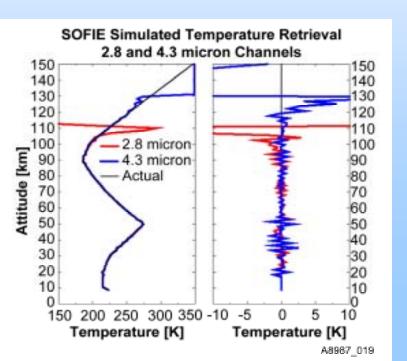

Simultaneous NLC, temperature, and gas measurements


SOFIE targets the mesosphere and above,

but will easily obtain stratospheric measurements

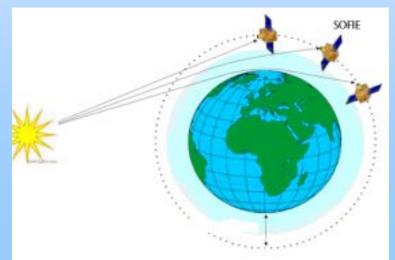
SOFIE Optical Layout

Channel Separation Module 2.907 -2.967 Channel Separation 2.632 Module Filter Layout Energy Division B S 3.030 Metal Mirror 5.263 5.051 5,376 (15) 3,333 4.348 -4,630 -4.444 4.740 (17) Broad Band B S Indium Tin Oxide B S Collimated Input Beam 333 Optical Element # 1.010 1.053 **Detector Optics** and Detector

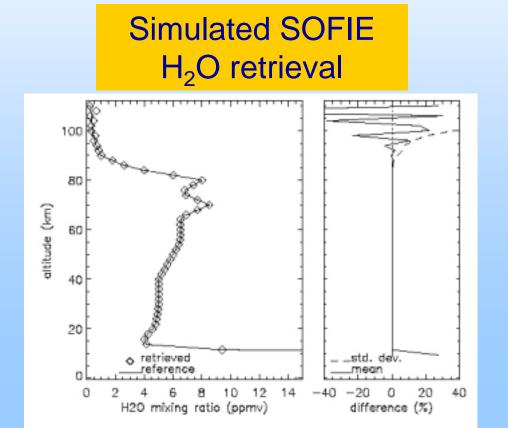

SOFIE Temperature Measurements

Based on 3 Measurements:

- ➤ Differential CO₂ absorption at 2.8 microns
- ➤ Differential CO₂ absorption at 4.3 microns
- ➤ Solar refraction angle vs. height


Retrievals from the tropopause to 105 km, in the presence of clouds

Simultaneous CO₂ retrievals


Height dependence of refraction angle is determined by the temperature profile

Same approach as GPS T retrievals

SOFIE Water Vapor Measurements

Based on absorption at 2.45 and 2.60 μm Immune to clouds and aerosols Retrievals from tropopause to 90 km

SOFIE Particle Measurements

Particle extinctions at 10 wavelengths (290 nm - 5.3 μ m):


- Two dedicated particle channels (4 wavelengths)
- Gas channel weak bands (6 wavelengths)

Measurements from the tropopause to the mesopause:

- Primary: NLCs
- Secondary: cosmic dust, PSCs, cirrus, SSA

Unique combination of UV thru IR wavelengths allows:

- Particle size distribution retrievals
- Inference of particle composition

Summary Solar Occultation For Ice Experiment (SOFIE)

- ✓ Onboard AIM, a mission to study noctilucent clouds
 - September 2006 launch
- ✓ Differential Solar Occultation
 - •8 channels, 16 bands
 - High precision
- ✓ Measurements of:
 - •H₂O, O₃, CH₄, NO, CO₂
 - •Particle extinction at 10 λ 's (290 nm 5.3 microns)
 - Temperature